Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 336(3): 589-95, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-15095974

RESUMO

The transcription factors C/EBPalpha and Sp1 functionally interact to induce expression of specific genes during myeloid and epithelial cell differentiation. The C/EBPalpha-Sp1 transcription factor "module" binds to enhancer elements within the upstream regulatory sequences of target genes. In our previous study we identified mouse TPA inducible sequence 7 (TIS7) as a novel co-repressor in epithelial cells undergoing loss of polarity. Increased levels of TIS7 down-regulate the transcription of a specific set of genes. Using bioinformatic analysis we identified a common binding site for the C/EBPalpha-Spl transcription factor module within the upstream regulatory regions of TIS7-regulated genes. The inhibitory effect of TIS7 on C/EBPalpha-Sp1-mediated transcription was confirmed by reporter assays. Our data showed that the TIS7 effect was mediated through specific interference with Sp1 transcriptional activity. Furthermore, TIS7 prevented formation of a complex between Sp1 protein and its consensus DNA binding site. Data presented here further specify the mechanism of action of the transcriptional co-repressor TIS7 as well as document the strength of a bioinformatic approach for the prediction and analysis of transcription factor modules.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Membrana/metabolismo , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismo , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Sítios de Ligação , Biologia Computacional , Genes Reporter , Células HeLa , Humanos , Substâncias Macromoleculares , Camundongos , Dados de Sequência Molecular , Alinhamento de Sequência
2.
Bioinformatics ; 17(12): 1179-82, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11751226

RESUMO

UNLABELLED: At advanced stages of working with user-defined protein and gene sequence collections, it is frequently necessary to link these data to the taxonomic tree and to extract subsets in accordance with taxonomic considerations. Since no general automatic tools had been available, this was a tedious manual effort. Our taxonomy workbench allows processing of sequence sets, mapping of these sets onto the taxonomic tree, collection of taxonomic subsets from them and printing of the whole tree or some part of it. As a side effect, the system enables queries to and navigation within the taxonomy database. AVAILABILITY: An implementation of the taxonomy workbench is accessible for public use as a www-service at http://mendel.imp.univie.ac.at/taxonomy/. Software components for the command-line and for the www-version are available on request. CONTACT: Georg.Schneider@nt.imp.univie.ac.at; Frank.Eisenhaber@nt.imp.univie.ac.at SUPPLEMENTARY INFORMATION: Documentation for the taxonomy workbench can be accessed at http://mendel.imp.univie.ac.at/taxonomy/help.html.


Assuntos
Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Ácidos Nucleicos/classificação , Proteínas/classificação , Software , Ácidos Nucleicos/análise , Proteínas/análise
3.
Curr Biol ; 11(13): 1001-9, 2001 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-11470404

RESUMO

BACKGROUND: Meiosis is the process by which gametes are generated with half the ploidy of somatic cells. This reduction is achieved by three major differences in chromosome behavior during meiosis as compared to mitosis: the production of chiasmata by recombination, the protection of centromere-proximal sister chromatid cohesion, and the monoorientation of sister kinetochores during meiosis I. Mistakes in any of these processes lead to chromosome missegregation. RESULTS: To identify genes involved in meiotic chromosome behavior in Saccharomyces cerevisiae, we deleted 301 open reading frames (ORFs) which are preferentially expressed in meiotic cells according to microarray gene expression data. To facilitate the detection of chromosome missegregation mutants, chromosome V of the parental strain was marked by GFP. Thirty-three ORFs were required for the formation of wild-type asci, eight of which were needed for proper chromosome segregation. One of these (MAM1) is essential for the monoorientation of sister kinetochores during meiosis I. Two genes (MND1 and MND2) are implicated in the recombination process and another two (SMA1 and SMA2) in prospore membrane formation. CONCLUSIONS: Reverse genetics using gene expression data is an effective method for identifying new genes involved in specific cellular processes.


Assuntos
Genes Fúngicos , Meiose/genética , Saccharomyces cerevisiae/genética , Esporos Fúngicos/genética , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Segregação de Cromossomos/genética , Deleção de Genes , Perfilação da Expressão Gênica , Fases de Leitura Aberta , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia
4.
Genes Dev ; 15(11): 1349-60, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11390355

RESUMO

We have studied four Caenorhabditis elegans homologs of the Rad21/Scc1/Rec8 sister-chromatid cohesion protein family. Based on the RNAi phenotype and protein localization, it is concluded that one of them, W02A2.6p, is the likely worm ortholog of yeast Rec8p. The depletion of C. elegans W02A2.6p (called REC-8) by RNAi, induced univalent formation and splitting of chromosomes into sister chromatids at diakinesis. Chromosome synapsis at pachytene was defective, but primary homology recognition seemed unaffected, as a closer-than-random association of homologous fluorescence in situ hybridization (FISH) signals at leptotene/zygotene was observed. Depletion of REC-8 also induced chromosome fragmentation at diakinesis. We interpret these fragments as products of unrepaired meiotic double-stranded DNA breaks (DSBs), because fragmentation was suppressed in a spo-11 background. Thus, REC-8 seems to be required for successful repair of DSBs. The occurrence of DSBs in REC-8-depleted meiocytes suggests that DSB formation does not depend on homologous synapsis. Anti-REC-8 immunostaining decorated synaptonemal complexes (SCs) at pachytene and chromosomal axes in bivalents and univalents at diakinesis. Between metaphase I and metaphase II, REC-8 is partially lost from the chromosomes. The partial loss of REC-8 from chromosomes between metaphase I and metaphase II suggests that worm REC-8 might function similarly to yeast Rec8p. The loss of yeast Rec8p from chromosome arms at meiosis I and centromeres at meiosis II coordinates the disjunction of homologs and sister chromatids at the two meiotic divisions.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/citologia , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , Proteínas Fúngicas/genética , Proteínas de Helminto/genética , Meiose/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas de Schizosaccharomyces pombe , Animais , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromossômicas não Histona , Sequência Conservada , Imunofluorescência , Proteínas de Helminto/análise , Proteínas de Helminto/metabolismo , Hibridização in Situ Fluorescente , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Filogenia , Proteínas de Saccharomyces cerevisiae , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
5.
Nature ; 406(6791): 94-8, 2000 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-10894549

RESUMO

Many cell-cycle-specific events are supported by stage-specific gene expression. In budding yeast, at least three different nuclear factors seem to cooperate in the periodic activation of G2/M-specific genes. Here we show, by using chromatin immunoprecipitation polymerase chain reaction assays, that a positive regulator, Ndd1, becomes associated with G2/M promoter regions in manner that depends on the stage in cell cycle. Its recruitment depends on a permanent protein-DNA complex consisting of the MADS box protein, Mcm1, and a recently identified partner Fkh2, a forkhead/winged helix related transcription factor. The lethality of Ndd1 depletion is suppressed by fkh2 null mutations, which indicates that Fkh2 may also have a negative regulatory role in the transcription of G2/M-induced RNAs. We conclude that Ndd1-Fkh2 interactions may be the transcriptionally important process targeted by Cdk activity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Fase G2/genética , Mitose/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Ciclina B/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead , Proteína 1 de Manutenção de Minicromossomo , Reação em Cadeia da Polimerase , Testes de Precipitina , Fatores de Transcrição/genética
6.
Cell ; 103(7): 1155-68, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11163190

RESUMO

The orderly reduction in chromosome number that occurs during meiosis depends on two aspects of chromosome behavior specific to the first meiotic division. These are the retention of cohesion between sister centromeres and their attachment to microtubules that extend to the same pole (monopolar attachment). By deleting genes that are upregulated during meiosis, we identified in Saccharomyces cerevisiae a kinetochore associated protein, Mam1 (Monopolin), which is essential for monopolar attachment. We also show that the meiosis-specific cohesin, Rec8, is essential for maintaining cohesion between sister centromeres but not for monopolar attachment. We conclude that monopolar attachment during meiosis I requires at least one meiosis-specific protein and is independent of the process that protects sister centromere cohesion.


Assuntos
Segregação de Cromossomos/fisiologia , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Cinetocoros/química , Meiose/fisiologia , Fosfoproteínas , Proteínas de Schizosaccharomyces pombe , Anáfase/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Cromossomos Fúngicos/fisiologia , Proteínas Fúngicas/metabolismo , Testes Genéticos , Genoma Fúngico , Proteínas Nucleares , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
7.
J Biol Chem ; 274(20): 14500-7, 1999 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-10318877

RESUMO

The anaphase-promoting complex/cyclosome (APC) is a ubiquitin-protein ligase whose activity is essential for progression through mitosis. The vertebrate APC is thought to be composed of 8 subunits, whereas in budding yeast several additional APC-associated proteins have been identified, including a 33-kDa protein called Doc1 or Apc10. Here, we show that Doc1/Apc10 is a subunit of the yeast APC throughout the cell cycle. Mutation of Doc1/Apc10 inactivates the APC without destabilizing the complex. An ortholog of Doc1/Apc10, which we call APC10, is associated with the APC in different vertebrates, including humans and frogs. Biochemical fractionation experiments and mass spectrometric analysis of a component of the purified human APC show that APC10 is a genuine APC subunit whose cellular levels or association with the APC are not cell cycle-regulated. We have further identified an APC10 homology region, which we propose to call the DOC domain, in several protein sequences that also contain either cullin or HECT domains. Cullins are present in several ubiquitination complexes including the APC, whereas HECT domains represent the catalytic core of a different type of ubiquitin-protein ligase. DOC domains may therefore be important for reactions catalyzed by several types of ubiquitin-protein ligases.


Assuntos
Anáfase , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae , Complexos Ubiquitina-Proteína Ligase , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc10 do Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular/genética , Códon de Terminação , Humanos , Ligases/genética , Substâncias Macromoleculares , Espectrometria de Massas , Dados de Sequência Molecular , Alinhamento de Sequência , Ubiquitina-Proteína Ligases
8.
EMBO J ; 18(10): 2707-21, 1999 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-10329618

RESUMO

In yeast, anaphase entry depends on Pds1 proteolysis, while chromosome re-duplication in the subsequent S-phase involves degradation of mitotic cyclins such as Clb2. Sequential proteolysis of Pds1 and mitotic cyclins is mediated by the anaphase-promoting complex (APC). Lagging chromosomes or spindle damage are detected by surveillance mechanisms (checkpoints) which block anaphase onset, cytokinesis and DNA re-replication. Until now, the MAD and BUB genes implicated in this regulation were thought to function in a single pathway that blocks APC activity. We show that spindle damage blocks sister chromatid separation solely by inhibiting APCCdc20-dependent Pds1 proteolysis and that this process requires Mad2. Blocking APCCdh1-mediated Clb2 proteolysis and chromosome re-duplication does not require Mad2 but a different protein, Bub2. Our data imply that Mad1, Mad2, Mad3 and Bub1 regulate APCCdc20, whereas Bub2 regulates APCCdh1.


Assuntos
Proteínas de Transporte , Ciclina B , Replicação do DNA/genética , Proteínas Monoméricas de Ligação ao GTP , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Troca de Cromátide Irmã , Fuso Acromático/genética , Complexos Ubiquitina-Proteína Ligase , Anáfase , Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ligação ao Cálcio/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Ciclinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interfase/genética , Ligases/metabolismo , Proteínas Mad2 , Mitose , Mutação , Nocodazol/farmacologia , Proteínas Nucleares/genética , Fosfoproteínas , Securina , Ubiquitina-Proteína Ligases , Leveduras
9.
Genes Dev ; 13(3): 320-33, 1999 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-9990856

RESUMO

Sister chromatid cohesion is crucial for chromosome segregation during mitosis. Loss of cohesion very possibly triggers sister separation at the metaphase --> anaphase transition. This process depends on the destruction of anaphase inhibitory proteins like Pds1p (Cut2p), which is thought to liberate a sister-separating protein Esp1p (Cut1p). By looking for mutants that separate sister centromeres in the presence of Pds1p, this and a previous study have identified six proteins essential for establishing or maintaining sister chromatid cohesion. Four of these proteins, Scc1p, Scc3p, Smc1p, and Smc3p, are subunits of a 'Cohesin' complex that binds chromosomes from late G1 until the onset of anaphase. The fifth protein, Scc2p, is not a stoichiometric Cohesin subunit but it is required for Cohesin's association with chromosomes. The sixth protein, Eco1p(Ctf7p), is not a Cohesin subunit. It is necessary for the establishment of cohesion during DNA replication but not for its maintenance during G2 and M phases.


Assuntos
Cromatina , Proteínas Cromossômicas não Histona , Sequência Conservada , Replicação do DNA , Proteínas Fúngicas/fisiologia , Proteínas Nucleares/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Coesinas
10.
Genes Dev ; 10(2): 129-41, 1996 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-8566747

RESUMO

When yeast cells reach a critical size in late G1 they simultaneously start budding, initiate DNA synthesis, and activate transcription of a set of genes that includes G1 cyclins CLN1, CLN2, and many DNA synthesis genes. Cell cycle-regulated expression of CLN1, CLN2 genes is attributable to the heteromeric transcription factor complex SBF. SBF is composed of Swi4 and Swi6 and binds to the promoters of CLN1 and CLN2. Different cyclin-Cdc28 complexes have different effects on late G1-specific transcription. Activation of transcription at the G1/S boundary requires Cdc28 and one of the G1 cyclins Cln1-Cln3, whereas repression of SBF-regulated genes in G2 requires the association of Cdc28 with G2-specific cyclins Clb1-Clb4. Using in vivo genomic footprinting, we show that SBF (Swi4/Swi6) binding to SCB elements (Swi4/Swi6 cell cycle box) in the CLN2 promoter is cell cycle regulated. SBF binds to the promoter prior to the activation of transcription in late G1, suggesting that Cln/Cdc28 kinase regulates the ability of previously bound SBF to activate transcription. In contrast, SBF dissociates from the CLN2 promoter when transcription is repressed during G2 and M phases, suggesting that Clb1-Clb4 repress SBF activity by inhibiting its DNA-binding activity. Switching transcription on and off by different mechanisms could be important to ensure that Clns are activated only once per cell cycle and could be a conserved feature of cell cycle-regulated transcription.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclinas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Serina Endopeptidases , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , Pegada de DNA , DNA Fúngico , Proteínas de Ligação a DNA , Fase G2/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica
11.
Mol Cell Biol ; 15(11): 5917-28, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-7565744

RESUMO

In the budding yeast Saccharomyces cerevisiae, MCM1 encodes an essential DNA-binding protein that regulates transcription of many genes in cooperation with different associated factors. With the help of a conditional expression system, we show that Mcm1 depletion has a distinct effect on cell cycle progression by preventing cells from undergoing mitosis. Genes that normally exhibit a G2-to-M-phase-specific expression pattern, such as CLB1, CLB2, CDC5, SWI5, and ACE2, remain uninduced in the absence of functional Mcm1. In vivo footprinting experiments show that Mcm1, in conjunction with an Mcm1-recruited factor, binds to the promoter regions of SWI5 and CLB2 at sites shown to be involved in cell cycle regulation. However, promoter occupation at these sites is cell cycle independent, and therefore the regulatory system seems to operate on constitutively bound Mcm1 complexes. A gene fusion that provides Mcm1 with a strong transcriptional activation domain causes transcription of SWI5, CLB1, CLB2, and CDC5 at inappropriate times of the cell cycle. Thus, Mcm1 and a cooperating, cell cycle-regulated activation partner are directly involved in the coordinated expression of multiple G2-regulated genes. The arrest phenotype of Mcm1-depleted cells is consistent with low levels of Clb1 and Clb2 kinase. However, constitutive CLB2 expression does not suppress the mitotic defect, and therefore other essential activities required for the G2-to-M transition must also depend on Mcm1 function.


Assuntos
Proteínas de Ciclo Celular , Ciclina B , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Fase G2 , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/fisiologia , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Ciclinas/fisiologia , Primers do DNA/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Proteína 1 de Manutenção de Minicromossomo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/citologia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...